df / dx = lim (dx -> 0) (f(x+dx) - f(x)) / dx (right sided)
df / dx = lim (dx -> 0) (f(x) - f(x-dx)) / dx (left sided)
df / dx = lim (dx -> 0) (f(x+dx) - f(x-dx)) / (2dx) (both sided)
Partial Differentiation Identities
if f( x(r,s), y(r,s) )df / dr = df / dx * dx / DR + df / dy * dy / DR
df / ds = df / dx * dx / Ds + df / dy * dy / Dsif f( x(r,s) )
df / DR = df / dx * dx / DR
df / Ds = df / dx * dx / Dsdirectional derivative
df(x,y) / d(Xi sub a) = f1(x,y) cos(a) + f2(x,y) sin(a)
(Xi sub a) = angle counterclockwise from pos. x axis.
Tidak ada komentar:
Posting Komentar